Quantum Feild Theory Ryder

Chapter 2 Single-particle relativistic wave equations

Relativistic notation

Correspondense of SU(2)SU(2) and SO(3)SO(3) group

U=eiσθ/2=cosθ/2+iσnsinθ/2R=eiJθU=\mathrm{e}^{\mathrm{i} \boldsymbol{\sigma} \cdot \boldsymbol{\theta} / 2}=\cos \theta / 2+\mathrm{i} \boldsymbol{\sigma} \cdot \mathbf{n} \sin \theta / 2 \leftrightarrow R=\mathrm{e}^{\mathrm{i} \cdot \boldsymbol{J} \boldsymbol{\theta}}

Generator of Lorentz Group

x0=γ(x0+βx1),x1=γ(βx0+x1),x2=x2,x3=x3 x^{0 \prime}=\gamma\left(x^{0}+\beta x^{1}\right), \quad x^{1 \prime}=\gamma\left(\beta x^{0}+x^{1}\right), \quad x^{2 \prime}=x^{2}, \quad x^{3 \prime}=x^{3} γ=coshϕ,γβ=sinhϕ, \gamma=\cosh \phi, \quad \gamma \beta=\sinh \phi, (x0x1x2x3)=(coshϕsinhϕ00sinhϕcoshϕ0000100001)(x0x1x2x3) \left(\begin{array}{l} x^{0 \prime} \\ x^{1 \prime} \\ x^{2 \prime} \\ x^{3 \prime} \end{array}\right)=\left(\begin{array}{cccc} \cosh \phi & \sinh \phi & 0 & 0 \\ \sinh \phi & \cosh \phi & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array}\right)\left(\begin{array}{l} x^{0} \\ x^{1} \\ x^{2} \\ x^{3} \end{array}\right) Kx=1Biϕϕ=0=i(0100100000000000) K_{x}=\left.\frac{1 \partial B}{\mathrm{i} \partial \phi}\right|_{\phi=0}=-\mathrm{i}\left(\begin{array}{cccc} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) Ky=i(0010000010000000),Kz=i(0001000000001000) K_{y}=-\mathrm{i}\left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right), \quad K_{z}=-\mathrm{i}\left(\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{array}\right)

Rotation Matrix in SO(3)

Rz(θ)=(cosθsinθ0sinθcosθ0001) R_{z}(\theta)=\left(\begin{array}{ccc} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{array}\right) Rx(ϕ)=(1000cosϕsinϕ0sinϕcosϕ)Ry(ψ)=(cosψ0sinψ010sinψ0cosψ) \begin{aligned} &R_{x}(\phi)=\left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \cos \phi & \sin \phi \\ 0 & -\sin \phi & \cos \phi \end{array}\right) \\ &R_{y}(\psi)=\left(\begin{array}{ccc} \cos \psi & 0 & -\sin \psi \\ 0 & 1 & 0 \\ \sin \psi & 0 & \cos \psi \end{array}\right) \end{aligned} Jz=1idRz(θ)dθθ=0=(0i0i00000)Jx=1idRx(ϕ)dϕϕ=0=(00000i0i0)Jy=1idRy(ψ)dψψ=0=(00i000i00) \begin{aligned} &J_{z}=\left.\frac{1}{\mathrm{i}} \frac{\mathrm{d} R_{z}(\theta)}{\mathrm{d} \theta}\right|_{\theta=0}=\left(\begin{array}{rrr} 0 & -\mathrm{i} & 0 \\ \mathrm{i} & 0 & 0 \\ 0 & 0 & 0 \end{array}\right) \\ &J_{x}=\left.\frac{1}{\mathrm{i}} \frac{\mathrm{d} R_{x}(\phi)}{\mathrm{d} \phi}\right|_{\phi=0}=\left(\begin{array}{rrr} 0 & 0 & 0 \\ 0 & 0 & -\mathrm{i} \\ 0 & \mathrm{i} & 0 \end{array}\right) \\ &J_{y}=\left.\frac{1}{\mathrm{i}} \frac{\mathrm{d} R_{y}(\psi)}{\mathrm{d} \psi}\right|_{\psi=0}=\left(\begin{array}{rrr} 0 & 0 & \mathrm{i} \\ 0 & 0 & 0 \\ -\mathrm{i} & 0 & 0 \end{array}\right) \end{aligned}

in 4×44\times 4 representation

Jx=i(0000000000010010),Jy=i(0000000100000100),Jz=i(0000001001000000). \begin{gathered} J_{x}=-\mathrm{i}\left(\begin{array}{rrrr} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{array}\right), \\ J_{y}=-\mathrm{i}\left(\begin{array}{rrrr} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right), \\ J_{z}=-\mathrm{i}\left(\begin{array}{rrrr} 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{array}\right) . \end{gathered}

commutation relations

[Kx,Ky]=iJz\left[K_{x}, K_{y}\right]=-\mathrm{i} J_{z} and cyclic perms [Jx,Kx]=0\left[J_{x}, K_{x}\right]=0 etc., [Jx,Ky]=iKz\left[J_{x}, K_{y}\right]=\mathrm{i} K_{z} and cyclic perms, ]]

A=12(J+iK)B=12(JiK).} \left.\begin{array}{l} \mathbf{A}=\frac{1}{2}(\mathbf{J}+\mathrm{iK}) \\ \mathbf{B}=\frac{1}{2}(\mathbf{J}-\mathrm{iK}) . \end{array}\right\}

[Ax,Ay]=iAz\left[A_{x}, A_{y}\right]=\mathrm{i} A_{z} and cyclic perms, [Bx,By]=iBz\left[B_{x}, B_{y}\right]=\mathrm{i} B_{z} and cyclic perms, [Ai,Bj]=0(i,j=x,y,z).]\left.\left[A_{i}, B_{j}\right]=0(i, j=x, y, z) .\right]

two types of vector

(j,0)J(j)=iKj(B=0),(0,j)J(j)=iK(j)(A=0),} \left.\begin{array}{ll} (j, 0) \rightarrow \mathbf{J}^{(j)}=\mathrm{i} \mathbf{K}^{j} & (\mathbf{B}=0), \\ (0, j) \rightarrow \mathbf{J}^{(j)}=-\mathrm{i} \mathbf{K}^{(j)} & (\mathbf{A}=0), \end{array}\right\}

and this in fact corresponds to the two possibilities in (2.69)(2.69). We may now define two types of spinor:

ξexp(iσ2θ+σ2ϕ)ξ=exp[iσ2(θiϕ)]ξMξ \begin{aligned} \xi & \rightarrow \exp \left(\mathrm{i} \frac{\sigma}{2} \cdot \boldsymbol{\theta}+\frac{\boldsymbol{\sigma}}{2} \cdot \boldsymbol{\phi}\right) \xi \\ &=\exp \left[\mathrm{i} \frac{\boldsymbol{\sigma}}{2} \cdot(\boldsymbol{\theta}-\mathrm{i} \boldsymbol{\phi})\right] \xi \equiv M \xi \end{aligned} ηexp[iσ2(θ+iϕ)]ηNη \eta \rightarrow \exp \left[\mathrm{i} \frac{\sigma}{2} \cdot(\boldsymbol{\theta}+\mathrm{i} \phi)\right] \eta \equiv N \eta

Relationship betwen MM and NN and MM

M=exp[iσ2(θiϕ)]N=exp[iσ2(θ+iϕ)] \begin{aligned} M=\exp \left[\mathrm{i} \frac{\boldsymbol{\sigma}}{2} \cdot(\boldsymbol{\theta}-\mathrm{i} \boldsymbol{\phi})\right]\\ N=\exp \left[\mathrm{i} \frac{\sigma}{2} \cdot(\boldsymbol{\theta}+\mathrm{i} \phi)\right] \end{aligned} N=ζMζ1 with ζ=iσ2 N=\zeta M^{*} \zeta^{-1} \quad \text { with } \zeta=-\mathrm{i} \sigma_{2} σ2σσ2=σ22σ=σ1ζMζ1=σ2exp[i2σ(θ+iϕ)]σ2=σ22exp[i2σ(θ+iφ)]=N. \begin{gathered} \sigma_{2} \sigma^{*} \sigma_{2}=-\sigma_{2}^{2} \sigma=-\sigma_{1} \\ \zeta M^{*} \zeta^{-1}=\sigma_{2} \exp \left[-\frac{\mathrm{i}}{2} \sigma^{*} \cdot(\boldsymbol{\theta}+\mathrm{i} \boldsymbol{\phi})\right] \sigma_{2} \\ =\sigma_{2}^{2} \exp \left[\frac{\mathrm{i}}{2} \boldsymbol{\sigma} \cdot(\boldsymbol{\theta}+\mathrm{i} \boldsymbol{\varphi})\right] \\ =N . \end{gathered}

Parity

vv\mathbf{v} \rightarrow-\mathbf{v}

KK\mathbf{K} \rightarrow-\mathbf{K}

J+J\mathbf{J} \rightarrow+\mathbf{J}

(j,0)(0,j),(j, 0) \leftrightarrow(0, j), \quad under parity

ξη.\xi \leftrightarrow \eta .

Irreducible representation of Lorentz Group

(ξη)(e1/2σ(θiϕ)00e1/2σ(θ+iϕ))(ξη)=(D(Λ)00Dˉ(Λ))(ξη) \begin{aligned} \left(\begin{array}{l} \xi \\ \eta \end{array}\right) & \rightarrow\left(\begin{array}{cc} \mathrm{e}^{1 / 2 \sigma \cdot(\theta-\mathrm{i} \phi)} & 0 \\ 0 & \mathrm{e}^{1 / 2 \sigma \cdot(\theta+\mathrm{i} \phi)} \end{array}\right)\left(\begin{array}{l} \xi \\ \eta \end{array}\right) \\ &=\left(\begin{array}{cc} D(\Lambda) & 0 \\ 0 & \bar{D}(\Lambda) \end{array}\right)\left(\begin{array}{l} \xi \\ \eta \end{array}\right) \end{aligned} Dˉ(Λ)=ζD(Λ)ζ1 \bar{D}(\Lambda)=\zeta D^{*}(\Lambda) \zeta^{-1}

ζ=iσ2\zeta = -i\sigma^2

not Unitary, and not compact

Derive of Dirac equation

θ=0\theta=0 and relable

ξϕR,ηϕL \xi \rightarrow \phi_{\mathrm{R}}, \quad \eta \rightarrow \phi_{\mathrm{L}} ϕRe1/2σφϕR=[cosh(ϕ/2)+σnsinh(ϕ/2)]ϕR \begin{aligned} \phi_{\mathrm{R}} & \rightarrow \mathrm{e}^{1 / 2 \boldsymbol{\sigma} \cdot \boldsymbol{\varphi}} \phi_{\mathrm{R}} \\ &=[\cosh (\phi / 2)+\boldsymbol{\sigma} \cdot \mathbf{n} \sinh (\phi / 2)] \phi_{\mathrm{R}} \end{aligned} cosh(ϕ/2)=[(γ+1)/2]1/2sinh(ϕ/2)=[(γ1)/2]1/2 \begin{aligned} \cosh(\phi/2)=[(\gamma+1)/2]^{1/2}\\ \sinh(\phi/2)=[(\gamma-1)/2]^{1/2} \end{aligned} ϕR(p)=[(γ+12)1/2+σp^(γ12)1/2]ϕR(0) \phi_{\mathrm{R}}(\mathbf{p})=\left[\left(\frac{\gamma+1}{2}\right)^{1 / 2}+\sigma \cdot \hat{\mathbf{p}}\left(\frac{\gamma-1}{2}\right)^{1 / 2}\right] \phi_{\mathrm{R}}(0)

γ=E/m\gamma=E / m

ϕR(p)=E+m+σp[2m(E+m)]1/2ϕR(0) \phi_{\mathrm{R}}(\mathbf{p})=\frac{E+m+\sigma \cdot \mathbf{p}}{[2 m(E+m)]^{1 / 2}} \phi_{\mathrm{R}}(0) ϕL(p)=E+mφp[2m(E+m)]1/2ϕL(0) \phi_{\mathrm{L}}(\mathbf{p})=\frac{E+m-\varphi \cdot \mathbf{p}}{[2 m(E+m)]^{1 / 2}} \phi_{\mathrm{L}}(0) ϕR(p)=E+σpmϕL(p) \phi_{\mathrm{R}}(\mathbf{p})=\frac{E+\sigma \cdot \mathbf{p}}{m} \phi_{\mathrm{L}}(\mathbf{p}) ϕL(p)=EσpmϕR(p) \phi_{\mathrm{L}}(\mathbf{p})=\frac{E-\sigma \cdot \mathbf{p}}{m} \phi_{\mathrm{R}}(\mathbf{p}) mϕR(p)+(p0+σp)ϕL(p)=0(p0σp)ϕR(p)mϕL(p)=0} \left.\begin{array}{r} -m \phi_{\mathrm{R}}(\mathbf{p})+\left(p_{0}+\boldsymbol{\sigma} \cdot \mathbf{p}\right) \phi_{\mathrm{L}}(\mathbf{p})=0 \\ \left(p_{0}-\boldsymbol{\sigma} \cdot \mathbf{p}\right) \phi_{\mathrm{R}}(\mathbf{p})-m \phi_{\mathrm{L}}(\mathbf{p})=0 \end{array}\right\} (mp0+σpp0σpm)(ϕR(p)ϕL(p))=0 \left(\begin{array}{cc} -m & p_{0}+\boldsymbol{\sigma} \cdot \mathbf{p} \\ p_{0}-\boldsymbol{\sigma} \cdot \mathbf{p} & -m \end{array}\right)\left(\begin{array}{l} \phi_{\mathrm{R}}(\mathbf{p}) \\ \phi_{\mathrm{L}}(\mathbf{p}) \end{array}\right)=0 ψ(p)=(ϕR(p)ϕL(p)) \psi(p)=\left(\begin{array}{l} \phi_{\mathrm{R}}(\mathbf{p}) \\ \phi_{\mathrm{L}}(\mathbf{p}) \end{array}\right) γ0=(0110),γi=(0σiσi0) \color{red}\gamma^{0}=\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc} 0 & -\sigma^{i} \\ \sigma^{i} & 0 \end{array}\right) (γ0p0+γipim)ψ(p)=0 \left(\gamma^{0} p_{0}+\gamma^{i} p_{i}-m\right) \psi(p)=0 (γμpμm)ψ(p)=0 \left(\gamma^{\mu} p_{\mu}-m\right) \psi(p)=0

helicity

m=0m=0

(p0+σp)ϕL(p)=0(p0σp)ϕR(p)=0 \begin{aligned} &\left(p_{0}+\boldsymbol{\sigma} \cdot \mathbf{p}\right) \phi_{\mathrm{L}}(\mathbf{p})=0 \\ &\left(p_{0}-\boldsymbol{\sigma} \cdot \mathbf{p}\right) \phi_{\mathrm{R}}(\mathbf{p})=0 \end{aligned} σp^ϕL=ϕL,σp^ϕR=ϕR \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \phi_{\mathrm{L}}=-\phi_{\mathrm{L}}, \quad \boldsymbol{\sigma} \cdot \hat{\mathbf{p}} \phi_{\mathrm{R}}=\phi_{\mathrm{R}}

2.4 Prediction of antiparticles

Algebra of γ\gamma matrix

(iγμμm)ψ=0 \color{red}\left(\mathrm{i} \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 [(γμμ)(γvv)i(γμμ)m]ψ=0(γμγμv+m2)ψ=0 \begin{array}{r} {\left[-\left(\gamma^{\mu} \partial_{\mu}\right)\left(\gamma^{v} \partial_{v}\right)-\mathrm{i}\left(\gamma^{\mu} \partial_{\mu}\right) m\right] \psi=0} \\ \left(\gamma^{\mu} \gamma^{\prime} \partial_{\mu} \partial_{v}+m^{2}\right) \psi=0 \end{array} 12(γμγv+γvγμ)12{γμ,γv} \frac{1}{2}\left(\gamma^{\mu} \gamma^{v}+\gamma^{v} \gamma^{\mu}\right) \equiv \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{v}\right\} 12{γμ,γv}μvψ+m2ψ=0 \frac{1}{2}\left\{\gamma^{\mu}, \gamma^{v}\right\} \partial_{\mu} \partial_{v} \psi+m^{2} \psi=0 (+m2)ψ(x)=0 \left(\square+m^{2}\right) \psi(x)=0 {γμ,γv}=2gμv. \color{red}\left\{\gamma^{\mu}, \gamma^{v}\right\}=2 g^{\mu v} . (γ0)2=1,(γi)2=1,γμγv=γvγμ(vμ). \left(\gamma^{0}\right)^{2}=1, \quad\left(\gamma^{i}\right)^{2}=-1, \quad \gamma^{\mu} \gamma^{v}=-\gamma^{v} \gamma^{\mu} \quad(v \neq \mu) .

probability current jμj^\mu

(iγμμm)ψ=0 \left(i \gamma^{\mu} \partial_{\mu}-m\right) \psi=0 ψ(iγ00+iγiim)=0 \psi^{\dagger}\left(-\mathrm{i} \gamma^{0} \stackrel{\leftarrow}{\partial}_{0}+\mathrm{i} \gamma^{i} \partial_{i}-m\right)=0

From γiγ0=γ0γi\gamma^i\gamma^0=-\gamma^0\gamma^i

ψˉ(iγμμ+m)=0 \bar{\psi}\left(\mathrm{i} \gamma^{\mu}{\partial}_{\mu}+m\right)=0 ψˉ=ψγ0 \color{red}\bar{\psi}=\psi^{\dagger} \gamma^{0} j˙μ=ψˉγμψ \dot{j}^{\mu}=\bar{\psi} \gamma^{\mu} \psi μjμ=(μψˉ)γμψ+ψˉγμ(μψ)=(imψˉ)ψ+ψˉ(imψ)=0 \begin{aligned} \partial_{\mu} j^{\mu} &=\left(\partial_{\mu} \bar{\psi}\right) \gamma^{\mu} \psi+\bar{\psi} \gamma^{\mu}\left(\partial_{\mu} \psi\right) \\ &=(i m \bar{\psi}) \psi+\bar{\psi}(-i m \psi)=0 \end{aligned} j0=ψˉγ0ψ=ψψ=ψ12+ψ22+ψ32+ψ42 j^{0}=\bar{\psi} \gamma^{0} \psi=\psi^{\dagger} \psi=\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}+\left|\psi_{3}\right|^{2}+\left|\psi_{4}\right|^{2}

2.5 Construction of Dirac spinors: algebra of γ\gamma matrix

Prove that ψˉψ\bar\psi \psi is a scalar, ψˉγ5ψ\bar\psi \gamma^5\psi is a pseudoscalar

ψ=(ϕRϕL) \psi=\left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right) ϕRexp[i2σ(θiϕ)]ϕR,ϕLexp[i2σ(θ+iϕ)]ϕL \phi_{\mathrm{R}} \rightarrow \exp \left[\frac{\mathrm{i}}{2} \sigma \cdot(\theta-\mathrm{i} \phi)\right] \phi_{\mathrm{R}}, \quad \phi_{\mathrm{L}} \rightarrow \exp \left[\frac{\mathrm{i}}{2} \sigma \cdot(\theta+\mathrm{i} \phi)\right] \phi_{\mathrm{L}} ϕRϕRexp[i2σ(θ+iϕ)],ϕLϕLexp[i2σ(θiϕ)] \phi_{\mathrm{R}}^{\dagger} \rightarrow \phi_{\mathrm{R}}^{\dagger} \exp \left[\frac{-\mathrm{i}}{2} \boldsymbol{\sigma} \cdot(\boldsymbol{\theta}+\mathrm{i} \phi)\right], \quad \phi_{\mathrm{L}}^{\dagger} \rightarrow \phi_{\mathrm{L}}^{\dagger} \exp \left[\frac{-\mathrm{i}}{2} \boldsymbol{\sigma} \cdot(\theta-\mathrm{i} \phi)\right] ψψ=ϕRϕR+ϕLϕL \psi^{\dagger} \psi=\phi_{\mathrm{R}}^{\dagger} \phi_{\mathrm{R}}+\phi_{\mathrm{L}}^{\dagger} \phi_{\mathrm{L}}  is not invariant. However, the adjoint spinor ψˉ defined in (2.104) has compo-  nents ψˉ=ψγ0=(ϕRϕL)(0110)=(ϕLϕR) \begin{aligned} &\text { is not invariant. However, the adjoint spinor } \bar{\psi} \text { defined in (2.104) has compo- } \\ &\text { nents } \\ &\qquad \bar{\psi}=\psi^{\dagger} \gamma^{0}=\left(\phi_{\mathrm{R}}^{\dagger} \phi_{\mathrm{L}}^{\dagger}\right)\left(\begin{array}{ll} 0 & 1 \\ 1 & 0 \end{array}\right)=\left(\phi_{\mathrm{L}}^{\dagger} \phi_{\mathrm{R}}^{\dagger}\right) \end{aligned} ψˉψ=ϕLϕR+ϕR˙ϕL \bar{\psi} \psi=\phi_{\mathrm{L}}^{\dagger} \phi_{\mathrm{R}}+\phi_{\mathrm{R}}^{\dot{\dagger}} \phi_{\mathrm{L}} ϕRϕL, \phi_{\mathrm{R}} \leftrightarrow \phi_{\mathrm{L}},

so ψˉψψˉψ\bar{\psi} \psi \rightarrow \bar{\psi} \psi, and is a true scalar, i.e. does not change sign under space reflection.


γ5=(1001) \gamma^{5}=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) γ5=iγ0γ1γγγ3=γ5. \gamma^{5}=\mathrm{i} \gamma^{0} \gamma^{1} \gamma^{\gamma} \gamma^{3}=\gamma_{5} . ψˉγ5ψ=(ϕLϕR)(1001)(ϕRϕL)=ϕLϕRϕR+ϕL. \begin{aligned} \bar{\psi} \gamma^{5} \psi &=\left(\phi_{\mathrm{L}}^{\dagger} \phi_{\mathrm{R}}\right)\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right)\left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right) \\ &=\phi_{\mathrm{L}}^{\dagger} \phi_{\mathrm{R}}-\phi_{\mathrm{R}}^{+} \phi_{\mathrm{L}} . \end{aligned}

ψˉψ\bar{\psi} \psi scalar,

ψˉγ5ψ\bar{\psi} \gamma_{5} \psi pseudoscalar,

ψˉγμψ\bar{\psi} \gamma^{\mu} \psi vector,

ψˉγμγ5ψ\bar{\psi} \gamma^{\mu} \gamma^{5} \psi axial vector,

ψˉ(γμγvγvγμ)ψ\bar{\psi}\left(\gamma^{\mu} \gamma^{v}-\gamma^{v} \gamma^{\mu}\right) \psi antisymmetric tensor.


Solutions of Dirac equation

ψ(x)=u(0)eimt positive energy, ψ(x)=v(0)eimt negative energy. } \left.\begin{array}{l} \psi(x)=u(0) \mathrm{e}^{-\mathrm{i} m t} \text { positive energy, } \\ \psi(x)=v(0) \mathrm{e}^{\mathrm{i} m t} \text { negative energy. } \end{array}\right\} u(1)(0)=(1000),u(2)(0)=(0100),v(1)(0)=(0010),v(2)(0)=(0001) u^{(1)}(0)=\left(\begin{array}{l} 1 \\ 0 \\ 0 \\ 0 \end{array}\right), \quad u^{(2)}(0)=\left(\begin{array}{l} 0 \\ 1 \\ 0 \\ 0 \end{array}\right), \quad v^{(1)}(0)=\left(\begin{array}{l} 0 \\ 0 \\ 1 \\ 0 \end{array}\right), \quad v^{(2)}(0)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \\ 1 \end{array}\right)

γ0\gamma^0 in Standard Representation

γ0=(1000010000100001) \gamma^{0}=\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)

obtaioned from Chiral Representation

γSR0=SγCR0S1S=12(1111) \begin{aligned} \gamma_{\mathrm{SR}}^{0} &=S \gamma_{\mathrm{CR}}^{0} S^{-1} \\ S &=\frac{1}{\sqrt{2}}\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \end{aligned}

ψ\psi in standard representation

ψ=S(ϕRϕL)=12(ϕR+ϕLϕRϕL) \psi=S\left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{l} \phi_{\mathrm{R}}+\phi_{\mathrm{L}} \\ \phi_{\mathrm{R}}-\phi_{\mathrm{L}} \end{array}\right) (ϕRϕL)(ϕRϕL)=(e1/2σϕ00e1/2σφ)(ϕRϕL)=M(ϕRϕL) \left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right) \rightarrow\left(\begin{array}{l} \phi_{\mathrm{R}}^{\prime} \\ \phi_{\mathrm{L}}^{\prime} \end{array}\right)=\left(\begin{array}{cc} \mathrm{e}^{1 / 2 \sigma \cdot \phi} & 0 \\ 0 & \mathrm{e}^{-1 / 2 \sigma \cdot \varphi} \end{array}\right)\left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right)=M\left(\begin{array}{l} \phi_{\mathrm{R}} \\ \phi_{\mathrm{L}} \end{array}\right) MSR=SMCRS1=(cosh(ϕ/2)σnsinh(ϕ/2)σnsinh(ϕ/2)cosh(ϕ/2)) M_{\mathrm{SR}}=S M_{\mathrm{CR}} S^{-1}=\left(\begin{array}{cc} \cosh (\phi / 2) & \sigma \cdot \mathrm{n} \sinh (\phi / 2) \\ \sigma \cdot \mathrm{n} \sinh (\phi / 2) & \cosh (\phi / 2) \end{array}\right) cosh(ϕ/2)=(E+m2m)1/2,sinh(ϕ/2)=(Em2m)1/2,tanh(ϕ/2)=pE+m \begin{aligned} \cosh (\phi / 2) &=\left(\frac{E+m}{2 m}\right)^{1 / 2}, \quad \sinh (\phi / 2)=\left(\frac{E-m}{2 m}\right)^{1 / 2}, \\ \tanh (\phi / 2) &=\frac{p}{E+m} \end{aligned} MSR=(E+m2m)1/2(10pzE+mpxipyE+m01px+ipyE+mpzE+mpzE+mpxipyE+m10px+ipyE+mpzE+m01) M_{\mathrm{SR}}=\left(\frac{E+m}{2 m}\right)^{1 / 2}\left(\begin{array}{cccc} 1 & 0 & \frac{p_{z}}{E+m} & \frac{p_{x}-\mathrm{i} p_{y}}{E+m} \\ 0 & 1 & \frac{p_{x}+\mathrm{i} p_{y}}{E+m} & \frac{-p_{z}}{E+m} \\ \frac{p_{z}}{E+m} & \frac{p_{x}-\mathrm{i} p_{y}}{E+m} & 1 & 0 \\ \frac{p_{x}+\mathrm{i} p_{y}}{E+m} & \frac{-p_{z}}{E+m} & 0 & 1 \end{array}\right) u(1)=(E+m2m)1/2(1pzE+mp+E+m),u(2)=(E+m2m)1/2(0pE+mpzE+m)v(1)=(E+m2m)1/2(pzE+mp+E+m10),v(2)=(E+m2m)1/2(pE+mpzE+m01) \begin{aligned} &u^{(1)}=\left(\frac{E+m}{2 m}\right)^{1 / 2}\left(\begin{array}{c} 1 \\ \frac{p_{z}}{E+m} \\ \frac{p_{+}}{E+m} \end{array}\right), \quad u^{(2)}=\left(\frac{E+m}{2 m}\right)^{1 / 2}\left(\begin{array}{c} 0 \\ \frac{p_{-}}{E+m} \\ \frac{-p_{z}}{E+m} \end{array}\right)\\ &v^{(1)}=\left(\frac{E+m}{2 m}\right)^{1 / 2}\left(\begin{array}{c} \frac{p_{z}}{E+m} \\ \frac{p_{+}}{E+m} \\ 1 \\ 0 \end{array}\right), \quad v^{(2)}=\left(\frac{E+m}{2 m}\right)^{1 / 2}\left(\begin{array}{c} \frac{p_{-}}{E+m} \\ \frac{-p_{z}}{E+m} \\ 0 \\ 1 \end{array}\right) \end{aligned}

where p±=px±ipy.p_{\pm}=p_{x} \pm \mathrm{i} p_{y} . The normalisation of the uu spinors is

uˉ(1)u(1)=(E+m2m)(10pzE+mpE+m)(1111)(1pzE+mp+E+m)=1\bar{u}^{(1)} u^{(1)}= \left(\frac{E+m}{2 m}\right)\left(\begin{array}{llll}1 & 0 & \frac{p_{z}}{E+m} & \frac{p_{-}}{E+m}\end{array}\right)\left(\begin{array}{cccc}1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1\end{array}\right)\left(\begin{array}{c}1 \\ \frac{p_{z}}{E+m} \\ \frac{p_{+}}{E+m}\end{array}\right)=1(E+m2m)(10pzE+mpE+m)(1111)(10Ezp+mp+E+m)=1 \left(\frac{E+m}{2 m}\right)\left(\begin{array}{llll} 1 & 0 & \frac{p_{z}}{E+m} & \frac{p_{-}}{E+m} \end{array}\right)\left(\begin{array}{cccc} 1 & & & \\ & 1 & & \\ & & -1 & \\ & & & -1 \end{array}\right)\left(\begin{array}{c} 1 \\ \frac{0}{E_{z}} \\ \frac{p+m}{\frac{p_{+}}{E+m}} \end{array}\right)=1 uˉ(α)(p)u(α)(p)=δααvˉ(α)(p)v(α)(p)=δααuˉ(α)(p)v(α)(p)=0u(α)+(p)u(α)(p)=v(α)+(p)v(α)(p)=Emδαα. \begin{aligned} \bar{u}^{(\alpha)}(p) u^{\left(\alpha^{\prime}\right)}(p) &=\delta_{\alpha \alpha^{\prime}} \\ \bar{v}^{(\alpha)}(p) v^{\left(\alpha^{\prime}\right)}(p) &=-\delta_{\alpha \alpha^{\prime}} \\ \bar{u}^{(\alpha)}(p) v^{\left(\alpha^{\prime}\right)}(p) &=0 \\ u^{(\alpha)+}(p) u^{\left(\alpha^{\prime}\right)}(p) &=v^{(\alpha)+}(p) v^{\left(\alpha^{\prime}\right)}(p)=\frac{E}{m} \delta_{\alpha \alpha^{\prime}} . \end{aligned}

In addition, from (2.96) and (2.136), uu and vv satisfy and it follows that the adjoint spinors obey

uˉ(p)(γpm)=0vˉ(p)(γp+m)=0 \begin{array}{r}\bar{u}(p)(\gamma \cdot p-m)=0 \\ \bar{v}(p)(\gamma \cdot p+m)=0\end{array}

Projection Operator

The operator m(γ)(γp+m)=0.)m(\gamma)(\gamma \cdot p+m)=0 .)

P+=αu(α)(p)uˉ(α)(p) P_{+}=\sum_{\alpha} u^{(\alpha)}(p) \bar{u}^{(\alpha)}(p)

is important in many applications. It is a projection operator, since, in view of (2.139),

P+2=α.βu(α)(p)uˉ(α)(p)u(β)(p)uˉ(β)=αu(α)(p)uˉ(α)(p)=P+ P_{+}^{2}=\sum_{\alpha . \beta} u^{(\alpha)}(p) \bar{u}^{(\alpha)}(p) u^{(\beta)}(p) \bar{u}^{(\beta)}=\sum_{\alpha} u^{(\alpha)}(p) \bar{u}^{(\alpha)}(p)=P_{+} (γpm)P+=0 (\gamma \cdot p-m) P_{+}=0 γpmP+=P+. \frac{\gamma \cdot p}{m} P_{+}=P_{+} . P+=αu(α)(p)uˉ(α)(p)=γp+m2m. P_{+}=\sum_{\alpha} u^{(\alpha)}(p) \bar{u}^{(\alpha)}(p)=\frac{\gamma \cdot p+m}{2 m} . P=αv(α)(p)vˉ(α)(p)=γp+m2m. P_{-}=-\sum_{\alpha} v^{(\alpha)}(p) \bar{v}^{(\alpha)}(p)=\frac{-\gamma \cdot p+m}{2 m} .

As expected, P++P=1P_{+}+P_{-}=1.

Trace formula

Tr(γα)(γb)=Tr(γb)(γa)=12Traμbv{γμ,γv}=abTr1=4ab \begin{aligned} \operatorname{Tr}(\gamma \cdot \alpha)(\gamma \cdot b) &=\operatorname{Tr}(\gamma \cdot b)(\gamma \cdot a) \\ &=\frac{1}{2} \operatorname{Tr} a_{\mu} b_{v}\left\{\gamma^{\mu}, \gamma^{v}\right\} \\ &=a \cdot b \operatorname{Tr} 1=4 a \cdot b \end{aligned} (γ5)2=1,{γ5,γμ}=0 \left(\gamma^{5}\right)^{2}=1, \quad\left\{\gamma^{5}, \gamma^{\mu}\right\}=0 Trd1dn=0,n odd  \operatorname{Tr} d_{1} \ldots d_{n}=0, \quad n \text { odd }

proof by γ5\gamma^5

Tr(γa)(γb)(γc)(γd)=Tr(γb)(γa)(γc)(γd)+2abTr(γc)(γd) \begin{aligned} \operatorname{Tr}(\gamma \cdot a)(\gamma \cdot b)(\gamma \cdot c)(\gamma \cdot d)=&-\operatorname{Tr}(\gamma \cdot b)(\gamma \cdot a)(\gamma \cdot c)(\gamma \cdot d) \\ &+2 a \cdot b \operatorname{Tr}(\gamma \cdot c)(\gamma \cdot d) \end{aligned}

Non-relativistic limit and the electron magnetic moment

pμpμeAμ p^{\mu} \rightarrow p^{\mu}-e A^{\mu} EEeϕ,ppeA. E \rightarrow E-e \phi, \quad \mathbf{p} \rightarrow \mathbf{p}-e \mathbf{A} . γ0(Eeϕ)ψγ(peA)ψ=mψ. \gamma^{0}(E-e \phi) \psi-\gamma \cdot(\mathbf{p}-e \mathbf{A}) \psi=m \psi . γ0=(1001),γ=(0σσ0),ψ=(uv) \gamma^{0}=\left(\begin{array}{rr} 1 & 0 \\ 0 & -1 \end{array}\right), \quad \gamma=\left(\begin{array}{rr} 0 & \sigma \\ -\sigma & 0 \end{array}\right), \quad \psi=\left(\begin{array}{l} u \\ v \end{array}\right) (Eeϕ)(uv)(peA)(0σσ0)(uv)=m(uv) (E-e \phi)\left(\begin{array}{r} u \\ -v \end{array}\right)-(\mathbf{p}-e \mathbf{A}) \cdot\left(\begin{array}{rr} 0 & \sigma \\ -\sigma & 0 \end{array}\right)\left(\begin{array}{l} u \\ v \end{array}\right)=m\left(\begin{array}{l} u \\ v \end{array}\right) (Eeϕ)uσ(peA)v=mu, (E-e \phi) u-\sigma \cdot(\mathbf{p}-e \mathbf{A}) v=m u, (Eeϕ)v+σ(peA)u=mv -(E-e \phi) v+\sigma \cdot(\mathbf{p}-e \mathbf{A}) u=m v v=(E+meϕ)1σ(peA)u. v=(E+m-e \phi)^{-1} \sigma \cdot(\mathbf{p}-e \mathbf{A}) u . v12mσ(peA)u=0(vc)u v \approx \frac{1}{2 m} \boldsymbol{\sigma} \cdot(\mathbf{p}-\mathrm{eA}) u=0\left(\frac{v}{c}\right) u Eu=σπσπ2mu+mu+eϕu E u=\frac{\boldsymbol{\sigma} \cdot \pi \boldsymbol{\sigma} \cdot \pi}{2 m} u+m u+e \phi u Wu=[12m(σπ)(σπ)+eϕ]u. W u=\left[\frac{1}{2 m}(\sigma \cdot \pi)(\sigma \cdot \pi)+e \phi\right] u . (σA)(σB)=AB+iσ(A×B) (\boldsymbol{\sigma} \cdot \mathbf{A})(\boldsymbol{\sigma} \cdot \mathbf{B})=\mathbf{A} \cdot \mathbf{B}+\mathrm{i} \boldsymbol{\sigma} \cdot(\mathbf{A} \times \mathbf{B}) (σπ)2=ππ+iσ(π×π)=(peA)2+iσ(peA)×(peA) \begin{aligned} (\boldsymbol{\sigma} \cdot \pi)^{2} &=\pi \cdot \pi+\mathrm{i} \boldsymbol{\sigma} \cdot(\pi \times \pi) \\ &=(\mathbf{p}-e \mathbf{A})^{2}+\mathrm{i} \boldsymbol{\sigma} \cdot(\mathbf{p}-e \mathbf{A}) \times(\mathbf{p}-e \mathbf{A}) \end{aligned} p×A+A×p. \mathbf{p} \times \mathbf{A}+\mathbf{A} \times \mathbf{p} . [pi,Aj]=iiAj \left[p_{i}, A_{j}\right]=-\mathrm{i} \hbar \partial_{i} A_{j} (piAjpjAi)+(AipjAjpi)=i(iAjjAi). \left(p_{i} A_{j}-p_{j} A_{i}\right)+\left(A_{i} p_{j}-A_{j} p_{i}\right)=-\mathrm{i} \hbar\left(\partial_{i} A_{j}-\partial_{j} A_{i}\right) . p×A+A×p=i×A=iB, \mathbf{p} \times \mathbf{A}+\mathbf{A} \times \mathbf{p}=-\mathrm{i} \hbar \nabla \times \mathbf{A}=-\mathrm{i} \hbar \mathbf{B}, H=12m(peA)2+eϕe2mσB. H=\frac{1}{2 m}(\mathbf{p}-e \mathbf{A})^{2}+e \phi-\frac{e \hbar}{2 m} \boldsymbol{\sigma} \cdot \mathbf{B} .

2.7 The relevance of the Poincare group: spin operators and the zero mass limit

Operator expression for angular momentum and boosts

x=xcosθ+ysinθy=xsinθ+ycosθz=z \begin{aligned} &x^{\prime}=x \cos \theta+y \sin \theta \\ &y^{\prime}=-x \sin \theta+y \cos \theta \\ &z^{\prime}=z \end{aligned} Jzf(x,y,z)=ilimθ0[f(x,y,z)f(x,y,z)θ]=ilimθ0[f(x+yθ,yxθ,z)f(x,y,z)θ]=i(yfxxfy)Jz=i(xyyx). \begin{aligned} J_{z} f(x, y, z) &=\mathrm{i} \lim _{\theta \rightarrow 0}\left[\frac{f\left(x^{\prime}, y^{\prime}, z\right)-f(x, y, z)}{\theta}\right] \\ &=\mathrm{i} \lim _{\theta \rightarrow 0}\left[\frac{f(x+y \theta, y-x \theta, z)-f(x, y, z)}{\theta}\right] \\ &=\mathrm{i}\left(y \frac{\partial f}{\partial x}-x \frac{\partial f}{\partial y}\right) \\ J_{z} &=-\mathrm{i}\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right) . \end{aligned} Jx=i(yzzy),Jy=i(zxxz) J_{x}=-\mathrm{i}\left(y \frac{\partial}{\partial z}-z \frac{\partial}{\partial y}\right), \quad J_{y}=-\mathrm{i}\left(z \frac{\partial}{\partial x}-x \frac{\partial}{\partial z}\right)

and we can easily prove that [Jx,Jy]=iJz\left[J_{x}, J_{y}\right]=\mathrm{i} J_{z} \quad and cyclic perms.

Definition of generator

Xα=i(xaαa=0x+yaαa=0y+zaαa=0z+taαa=0t)=ixμaαxμ(α=1,,r) \begin{aligned} X_{\alpha} &=\mathrm{i}\left(\left.\frac{\partial x^{\prime}}{\partial a^{\alpha}}\right|_{a=0} \frac{\partial}{\partial x}+\left.\frac{\partial y^{\prime}}{\partial a^{\alpha}}\right|_{a=0} \frac{\partial}{\partial y}+\left.\frac{\partial z^{\prime}}{\partial a^{\alpha}}\right|_{a=0} \frac{\partial}{\partial z}+\left.\frac{\partial t^{\prime}}{\partial a^{\alpha}}\right|_{a=0} \frac{\partial}{\partial t}\right) \\ &=\mathrm{i} \frac{\partial x^{\prime \mu}}{\partial a^{\alpha}} \frac{\partial}{\partial x^{\mu}}(\alpha=1, \ldots, r) \end{aligned} Kx=i(tx+xt) K_{x}=\mathrm{i}\left(t \frac{\partial}{\partial x}+x \frac{\partial}{\partial t}\right) Ky=i(ty+yt),Kz=i(tz+zt) K_{y}=\mathrm{i}\left(t \frac{\partial}{\partial y}+y \frac{\partial}{\partial t}\right), \quad K_{z}=i\left(t \frac{\partial}{\partial z}+z \frac{\partial}{\partial t}\right) [Kx,Ky]=iJz and cyclic perms, [Kx,Jy]=iKz and cyclic perms, [Kx,Jx]=0, etc., } \left.\begin{array}{rl} {\left[K_{x}, K_{y}\right]=-\mathrm{i} J_{z}} & \text { and cyclic perms, } \\ {\left[K_{x}, J_{y}\right]=\mathrm{i} K_{z}} & \text { and cyclic perms, } \\ {\left[K_{x}, J_{x}\right]=0,} & \text { etc., } \end{array}\right\}

Chapter 3 Lagrangian formulation, symmetries and gauge fields

3.2 The real scalar field: variational principle and Noether’s theorem

Euler-Lagrange Equation

Lϕxμ[L(μϕ)]=0 \frac{\partial \mathscr{L}}{\partial \phi}-\frac{\partial}{\partial x^{\mu}}\left[\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi\right)}\right]=0

Lagrangian for Klein-Gordon Equation

L=12gκλ(κϕ)(λϕ)m22ϕ2 \mathscr{L}=\frac{1}{2} g^{\kappa \lambda}\left(\partial_{\kappa} \phi\right)\left(\partial_{\lambda} \phi\right)-\frac{m^{2}}{2} \phi^{2}

This equation is written deliberately to give the Klein-Gordon Equation

Symmetry and conserved quantity(Noether’s theorem), There’s another type of conserved quantity which is topological in nature, and whose conservation has nothing to do with Nother’s theorem

Energy-Momentum tensor

3.3 Complex scalar fields and the electromagnetic field

Conservation of charge from noether’s theorem

ϕ=(ϕ1+iϕ2)/2ϕ=(ϕ1iϕ2)/2 \begin{aligned} \phi &=\left(\phi_{1}+\mathrm{i} \phi_{2}\right) / \sqrt{2} \\ \phi^{*} &=\left(\phi_{1}-\mathrm{i} \phi_{2}\right) / \sqrt{2} \end{aligned} L=(μϕ)(μϕ)m2ϕϕ \mathscr{L}=\left(\partial_{\mu} \phi\right)\left(\partial^{\mu} \phi^{*}\right)-m^{2} \phi^{*} \phi (+m2)ϕ=0(+m2)ϕ=0 \begin{gathered} \left(\square+m^{2}\right) \phi=0 \\ \left(\square+m^{2}\right) \phi^{*}=0 \end{gathered}

Symmetry

ϕeiλϕ,ϕeiΛϕ \phi \rightarrow \mathrm{e}^{-\mathrm{i} \lambda} \phi, \quad \phi^{*} \rightarrow \mathrm{e}^{\mathrm{i} \Lambda} \phi^{*} δϕ=iΛϕ,δϕ=iΛϕ \delta \phi=-\mathrm{i} \Lambda \phi, \quad \delta \phi^{*}=\mathrm{i} \Lambda \phi^{*} δ(μϕ)=iΛμϕ,δ(μϕ)=iΛμϕ \delta\left(\partial_{\mu} \phi\right)=-\mathrm{i} \Lambda \partial_{\mu} \phi, \quad \delta\left(\partial_{\mu} \phi^{*}\right)=\mathrm{i} \Lambda \partial_{\mu} \phi^{*} Φ=iϕ,Φ=iϕ,X=0. \Phi=-\mathrm{i} \phi, \quad \Phi^{*}=\mathrm{i} \phi^{*}, \quad X=0 . Jμ=L(μϕ)(iϕ)+L(μϕ)(iϕ) J^{\mu}=\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi\right)}(-\mathrm{i} \phi)+\frac{\partial \mathscr{L}}{\partial\left(\partial_{\mu} \phi^{*}\right)}\left(\mathrm{i} \phi^{*}\right) Jμ=i(ϕμϕϕμϕ) J^{\mu}=\mathrm{i}\left(\phi^{*} \partial^{\mu} \phi-\phi \partial^{\mu} \phi^{*}\right) μJμ=0, \partial_{\mu} J^{\mu}=0, Q=J0 dV=i(ϕϕtϕϕt)dV \begin{aligned} Q &=\int J^{0} \mathrm{~d} V \\ &=\mathrm{i} \int\left(\phi^{*} \frac{\partial \phi}{\partial t}-\phi \frac{\partial \phi^{*}}{\partial t}\right) \mathrm{d} V \end{aligned}

Geometry form of guage transformation

L=(μϕ1)(μϕ1)+(μϕ2)(μϕ2)m2(ϕ12+ϕ22) \mathscr{L}=\left(\partial_{\mu} \phi_{1}\right)\left(\partial^{\mu} \phi_{1}\right)+\left(\partial_{\mu} \phi_{2}\right)\left(\partial^{\mu} \phi_{2}\right)-m^{2}\left(\phi_{1}^{2}+\phi_{2}^{2}\right) ϕ=iϕ1+jϕ2 \phi=\mathrm{i} \phi_{1}+\mathrm{j} \phi_{2} ϕ=iϕ1+jϕ2 \phi=\mathbf{i} \phi_{1}+\mathbf{j} \phi_{2} L=(μϕ)(μϕ)m2ϕϕ. \mathscr{L}=\left(\partial_{\mu} \boldsymbol{\phi}\right) \cdot\left(\partial^{\mu} \boldsymbol{\phi}\right)-m^{2} \boldsymbol{\phi} \cdot \boldsymbol{\phi} . ϕ1+iϕ2=eiΛ(ϕ1+iϕ2),ϕ1iϕ2=eiΛ(ϕ1iϕ2), \begin{aligned} &\phi_{1}^{\prime}+\mathrm{i} \phi_{2}^{\prime}=\mathrm{e}^{-\mathrm{i} \Lambda}\left(\phi_{1}+\mathrm{i} \phi_{2}\right), \\ &\phi_{1}^{\prime}-\mathrm{i} \phi_{2}^{\prime}=\mathrm{e}^{\mathrm{i} \Lambda}\left(\phi_{1}-\mathrm{i} \phi_{2}\right), \end{aligned} ϕ1=ϕ1cosΛ+ϕ2sinΛϕ2=ϕ1sinΛ+ϕ2cosΛ.} \left.\begin{array}{l} \phi_{1}^{\prime}=\phi_{1} \cos \Lambda+\phi_{2} \sin \Lambda \\ \phi_{2}^{\prime}=-\phi_{1} \sin \Lambda+\phi_{2} \cos \Lambda . \end{array}\right\}

Rotations in two dimensions form the group of SO(2)SO(2). On the other hand, since the transformation was equivalently represented by a unitary matrix in one dimension

eiΛ(eiΛ)=1 e^{i\Lambda}(e^{i\Lambda})^*=1

Then SO(2)U(1)SO(2)\approx U(1)

Since Λ\Lambda is a constant, the gauge transformation must be the same at all points in spacetime, it is a global symmetry. We must perform the same rotations at all points at the same time, but it contradicts relativity, therefore, we adopt Λ(xμ)\Lambda(x^\mu), which is called a local gauge transformation, also called a guage transformation of the second kind.