$$ \operatorname{Tr}(A+B) \equiv \operatorname{Tr}(A)+\operatorname{Tr}(B) $$$$ \operatorname{Tr}(A B \ldots Y Z) \equiv \operatorname{Tr}(Z A B \ldots Y) $$$$ \gamma^{\mu} \gamma^{\nu}+\gamma^{\nu} \gamma^{\mu} \equiv 2 g^{\mu \nu} I $$

Take the trace of the above formula

$$ \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)+\operatorname{Tr}\left(\gamma^{\nu} \gamma^{\mu}\right)=2 g^{\mu \nu} \operatorname{Tr}(I) $$$$ \operatorname{Tr}(\gamma^\mu \gamma^\nu)= \operatorname{Tr}(\gamma^\nu\gamma^\mu) $$$$ \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu} $$$$ \begin{aligned} \operatorname{Tr}(\gamma \cdot a)(\gamma \cdot b) &=\operatorname{Tr}(\gamma \cdot b)(\gamma \cdot a) \\ &=\frac{1}{2} \operatorname{Tr} a_{\mu} b_{\nu}\left\{\gamma^{\mu}, \gamma^{\nu}\right\} \\ &=a \cdot b \operatorname{Tr} 1=4 a \cdot b \end{aligned} $$
  • The trace of any odd number of $\gamma$ matrices are zero.
$$ \begin{aligned} \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right) &=\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right) \\ &=\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{5}\right) \\ &=-\operatorname{Tr}\left(\gamma^{5} \gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)\\ &=-\operatorname{Tr}(\gamma^\mu\gamma^\nu \gamma^\rho) \end{aligned} $$$$ \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho}\right)=0 $$$$ \begin{aligned} \operatorname{Tr} a\llap{/}_1 \ldots a\llap{/}_{n} &=\operatorname{Tr} a\llap{/}_{1} \ldots a\llap{/}_{n} \gamma_{5} \gamma_{5} \\ &=\operatorname{Tr} \gamma_{5} a\llap/_{1} \ldots a\llap{/}_{n} \gamma_{5} \end{aligned} $$$$ \operatorname{Tr} a\llap/_{1} \ldots a\llap/_{n}=(-1)^{n} \operatorname{Tr} a\llap/_{1} \ldots a\llap/_{n} \gamma_{5} \gamma_{5} $$$$ \operatorname{Tr} a\llap/_{1} \ldots a\llap/_{n}=0, \quad n \text { odd } . $$
  • Trace of even number of matrices
$$ \begin{aligned} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} &=2 g^{\mu \nu} \gamma^{\rho} \gamma^{\sigma}-\gamma^{\nu} \gamma^{\mu} \gamma^{\rho} \gamma^{\sigma} \\ &=2 g^{\mu \nu} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{\nu} \gamma^{\sigma}+\gamma^{\nu} \gamma^{\rho} \gamma^{\mu} \gamma^{\sigma} \\ &=2 g^{\mu \nu} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{\nu} \gamma^{\sigma}+2 g^{\mu \sigma} \gamma^{\nu} \gamma^{\rho}-\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu} \end{aligned} $$$$ \Rightarrow \quad \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}+\gamma^{\nu} \gamma^{\rho} \gamma^{\sigma} \gamma^{\mu}=2 g^{\mu \nu} \gamma^{\rho} \gamma^{\sigma}-2 g^{\mu \rho} \gamma^{\nu} \gamma^{\sigma}+2 g^{\mu \sigma} \gamma^{\nu} \gamma^{\rho} . $$$$ \operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 g^{\mu \nu} g^{\rho \sigma}-4 g^{\mu \rho} g^{\nu \sigma}+4 g^{\mu \sigma} g^{\nu \rho} $$$$ \begin{aligned} \operatorname{Tr}(\gamma \cdot a)(\gamma \cdot b)(\gamma \cdot c)(\gamma \cdot d)=&-\operatorname{Tr}(\gamma \cdot b)(\gamma \cdot a)(\gamma \cdot c)(\gamma \cdot d) \\ &+2 a \cdot b \operatorname{Tr}(\gamma \cdot c)(\gamma \cdot d) \end{aligned} $$
  • Full trace theorems

(a) $\operatorname{Tr}(I)=4$ (b) the trace of any odd number of $\gamma$-matrices is zero; (c) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 g^{\mu \nu}$; (d) $\operatorname{Tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 g^{\mu \nu} g^{\rho \sigma}-4 g^{\mu \rho} g^{\nu \sigma}+4 g^{\mu \sigma} g^{\nu \rho}$; (e) the trace of $\gamma^{5}$ multiplied by an odd number of $\gamma$-matrices is zero; (f) $\operatorname{Tr}\left(\gamma^{5}\right)=0$ (g) $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu}\right)=0$; and (h) $\operatorname{Tr}\left(\gamma^{5} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} \gamma^{\sigma}\right)=4 i \varepsilon^{\mu \nu \rho \sigma}$, where $\varepsilon^{\mu \nu \rho \sigma}$ is antisymmetric under the interchange of any two indices.